
6
THE APPEARANCE MANAGER
 Demonstration Program: Appearance

History
The Appearance Manager, which was first introduced with Mac OS 8.0, had implications for the Menu
Manager, the Window Manager, the Control Manager, and the Dialog Manager. The relatively minor
implications in respect of the Menu Manager and Window Manager were incorporated into Chapter 3 and
Chapter 4. The most profound impact of the Appearance Manager, however, has been in the area of user
interface objects known as controls, which are addressed at Chapters 7 and 14. Accordingly, as a
preparation for what is to come, this chapter now formally introduces the Appearance Manager, a
component of the system software which, on Mac OS 8/9, represented the most significant improvement in
the Macintosh user experience since the introduction of System 7.
Although introduced with Mac OS 8.0, the Appearance Manager's full impact on the Macintosh user
experience was not scheduled to be realised until the release of Mac OS 8.5. Mac OS 8.5 was to be the
first release to include several switchable themes, one of which (the Platinum theme) had, in fact, been
included in Mac OS 8.0. The concept of switchable themes was the main driving force behind the creation
of the Appearance Manager.
Essentially, a theme was intended to be an interface "look" that spanned all elements of the user interface
(windows, menus, dialogs, controls, background colours, alert icons, etc), tying them together with a
certain graphic design. Fig 1 shows the same window as it would have appeared in the three themes
originally intended to be included in Mac OS 8.5. If one of these themes had been selected by the user, all
elements of the user interface (menus, windows, controls, etc.) would have appeared in that theme.

FIG 1 - WINDOWS IN THREE THEMES

The two additional themes (High Tech and Gizmo) shown at Fig 1 were included in pre-release versions of
Mac OS 8.5; however, prior to final release, these two themes were deleted. The reasons for this decision
by Apple remain tantalisingly obscure.

Themes — New Definition
Mac OS 8.5 did, in fact, introduce a theme scheme, though one of an entirely different flavour to that
described above. This is reflected in the Appearance control panel introduced with Mac OS 8.5, in which

The Appearance Manager Version 1.0 6-1

the Platinum theme is now referred to as the Platinum appearance. An appearance (new definition) is now
simply one component of a broader set of user preferences known as a theme (new definition). With the
release of Mac OS 8.5, therefore, the term "theme" took on an entirely new meaning.
On Mac OS 8/9, in Mac OS 8.5 and later, an individual theme is a set of user preferences encompassing:

 An appearance (which unifies the look of human interface objects such as windows, dialogs, alerts,
menus, controls, etc.), together with a highlight colour (for selected text) and a variation colour (for
menus and controls). (As of Mac OS 9.1, Platinum remains the only appearance ever provided by
Apple. It is by now certain that this situation will never change.)

 A large system font (for menus and headings), a small system font (for explanatory text and labels),
a views font (for lists and icons), and an option to turn anti-aliasing of fonts on screen on or off.

 A desktop picture and desktop pattern.

 Sound preferences relating to opening menus and choosing items, dragging and resizing windows,
interacting with controls, and clicking, dragging, and dropping in the Finder.

 Scrolling preference (smart scrolling on or off) and collapse-window preference (double-click title
bar to collapse window on or off).

Theme-Compliance
Another significant terminological change ushered in by Mac OS 8.5 was that, whereas Apple
documentation previously spoke of making applications appearance-compliant, documentation released
following the release of Mac OS 8.5 spoke of making applications theme-compliant. It is assumed that
the reason for this change is that, while the vast bulk of the measures required to make an application
theme-compliant relate to unifying the look of the application's Mac OS 8/9 user interface elements (the
province of an appearance), there are additional measures that the application may take, or may have to
take:

 In response to the user changing the system and/or views fonts, using the Fonts tab of the
Appearance control panel, while the application is running. (This consideration does not apply if
the application uses standard human interface elements (that is, system-defined windows, controls,
and menus), since the fonts used for these elements automatically change with the theme change.
However, some applications may use custom human interface elements and may, for example, draw
their own text in a dialog. In such cases, the application must ensure that the fonts used match the
corresponding system fonts in the current theme.)

 To cause theme-compliant sounds to accompany, for example, the opening and closing of the
application's windows and the manipulation by the user of custom human interface elements.

 To support the proportional scroll boxes1 the user expects when Smart Scrolling is selected on in the
Options tab of the Appearance control panel.

The Appearance Manager
The influence of the Appearance Manager is evident to a greater or lesser extent in many chapters of this
book and in all of the associated demonstration programs. Amongst other things, it ensures consistency in
the appearance of the standard human interface elements on both Mac OS 8/9 and Mac OS X. It also
provides the means to:

 Ensure that the appearance of your application's custom human interface elements (if any) is
consistent with the Platinum and Aqua "look".

 Draw anti-aliased text on Mac OS X.

Carbon fully supports the Appearance Manager.

1 Proportional scroll boxes are scroll boxes which vary in size according to the proportion of the document visible in the
window.

6-2 Version 1.0 The Appearance Manager

New Definition Functions — Mac OS 8/9
To provide a system-wide coordination of look and behaviour on Mac OS 8/9, new theme-compliant
definition functions were introduced with the Appearance Manager to replace the old pre-Appearance
Manager definition functions for menu bars, menus, windows, and controls. In addition, many new theme-
compliant control definition functions for new types of controls (slider controls, focus rings, group boxes,
etc.) were introduced to obviate the necessity for developers to provide their own.

Colours, Patterns, and Appearance Primitives
The Appearance Manager provides Appearance primitives, and the means to set the colours and patterns,
needed to draw consistently in the Platininum appearance on Mac OS 8/9 and with the Aqua "look" on
Mac OS X. Using these drawing primitives, colours, and patterns makes it easier to create visual entities
and custom human interface elements that are consistent with the Platinum appearance and Aqua "look".

Drawing Appearance Primitives
As will become apparent at Chapters 7 and 14, most of the Appearance primitives relate to certain controls.
The definition functions for these controls call these primitives when drawing the relevant control. For
example, the control definition function for a primary group box calls the primitive DrawThemePrimaryGroup
to draw the visual representation of that control.
Your application might use these primitives to, for example, draw an image of a placard, window header,
edit text field frame, etc., when you don’t want to use a control.
The following are examples of functions that draw Appearance primitives:

Function Description
DrawThemePrimaryGroup Draws a primary group box frame.
DrawThemeSecondaryGroup Draws a secondary group box frame.
DrawThemeSeparator Draws a separator line. The orientation of the rectangle determines how the

separator line is drawn. If the rectangle is wider than it is tall, the separator line
is horizontal; otherwise it is vertical.

DrawThemeWindowHeader Draws a window header.
DrawThemePlacard Draws a placard.
DrawThemeEditTextFrame Draws an edit text field frame. The rectangle passed in should be the same as

the one passed in the function DrawThemeFocusRect (see below) so you get the
correct focus look for your edit text field. You should not use these frames for
items other than edit text fields.

DrawThemeListBoxFrame Draws a list box frame. The rectangle passed in should be the same as the one
passed into the function DrawThemeFocusRect (see below) so that you get the
correct focus look for your list box.

DrawThemeFocusRect Draws or erases a focus ring around a specified rectangle. To achieve the right
look, you should first call DrawThemeEditTextFrame or DrawThemeListBoxFrame
and then call DrawThemeFocusRect, passing the same rectangle in the inRect
parameter. If you use DrawThemeFocusRect to erase the focus ring around an edit
text field frame or list box frame, you will have to redraw the edit text field
frame or list box frame because there is typically an overlap.

DrawThemeGenericWell Draws an image well frame. You can specify that the centre of the well be filled
with white (Mac OS 8/9).

DrawThemeFocusRegion Draws or erases a focus ring around a specified region.
DrawThemeTabPane Draws a tab-pane.
DrawThemeTab Draws a tab.

Fig 2 shows examples of images drawn in the active mode using the Appearance primitives.

The Appearance Manager Version 1.0 6-3

FIG 2 - IMAGES DRAWN WITH APPEARANCE DRAWING PRIMITIVES

WINDOW HEADER

PRIMARY GROUP BOX FRAME
SECONDARY GROUP BOX FRAME

EDIT TEXT FIELD FRAME
EDIT TEXT FIELD FRAME AND

KEYBOARD FOCUS RECTANGLE

IMAGE WELL

IMAGE WELL WITH INTERIOR IN WHITE
LIST BOX FRAME

PLACARD

SEPARATOR LINE

SEPARATOR LINE

Draw State Constants
The following constants are passed in the inState parameter of the functions that draw Appearance
primitives (except DrawThemeFocusRect and DrawThemeFocusRegion) to specify whether the primitive should
be drawn in the active or deactivated mode. (DrawThemeFocusRect and DrawThemeFocusRegion either draw or
erase the focus rectangle depending on whether true or false is passed in the inHasFocus parameter.)

Constant Valu
e

Description

kThemeStateInactive 0 Draw the primitive in the inactive mode.
kThemeStateActive 1 Draw the primitive in the active mode.

Another draw state constant (kThemeStatePressed) is available to draw certain primitives in the pressed
mode; however, the primitives listed above can only be drawn in the active and inactive modes.

Drawing in Colours and Patterns
Consistent With the Platinum
Appearance and Aqua "Look"

The following functions are those used to draw using colours/patterns consistent with the Platinum
appearance and Aqua "look". (Patterns are explained at Chapter 11.) The reference to colours and patterns
reflects the fact that either a colour or a pattern may be used for the drawing.

Function Description
SetThemeWindowBackground Sets the colour/pattern that the window background will be repainted to when PaintOne

is called. This function sets the colour/pattern to which the Window Manager will
erase the window background.
See also Brush Type Constants, below.

SetThemeBackground Sets an element’s background colour/pattern to comply with the Platinum
appearance/Aqua "look". This function should be called each time you wish to draw
an element in a specified brush constant using Appearance Manager draw functions.
See also Brush Type Constants, below.

SetThemePen Sets an element’s pen pattern or colour to comply with the Platinum appearance/Aqua
"look". This function should be called each time you wish to draw an element in a
specified brush constant using Appearance Manager draw functions.
See also Brush Type Constants, below.

SetThemeTextColor Sets an element’s foreground colour for drawing text to comply with the Platinum
appearance/Aqua "look".
See also Text Colour Constants, below.

Brush Type Constants
The following are examples of constants, of type ThemeBrush, which may be passed in the inBrush parameter
of calls to SetThemeWindowBackground, SetThemeBackground, and SetThemePen to specify colours/patterns for

6-4 Version 1.0 The Appearance Manager

user interface elements. For reasons explained above, these constants can represent either a straight colour
or a pattern.

Constant Description
kThemeBrushDialogBackgroundActive An active dialog’s background colour/ pattern.
kThemeBrushDialogBackgroundInactive An inactive dialog’s background colour or pattern.
kThemeBrushAlertBackgroundActive An active alert’s background colour/pattern.
kThemeBrushAlertBackgroundInactive An inactive alert’s background colour/pattern.
kThemeBrushModelessDialogBackgroundActive An active modeless dialog’s background colour/pattern.
kThemeBrushModelessDialogBackgroundInactive An inactive modeless dialog’s background colour/pattern.
kThemeBrushUtilityWindowBackgroundActive An active utility window’s background colour/pattern.
kThemeBrushUtilityWindowBackgroundInactive An inactive utility window’s background colour/pattern.
kThemeBrushListViewSortColumnBackground The background colour/pattern of the column upon which a list

view is sorted. (Applicable on Mac OS 8/9 only.)
kThemeBrushListViewBackground The background colour/pattern of a list view column that is not

being sorted upon. (Applicable on Mac OS 8/9 only.)
kThemeBrushListViewSeparator A list view separator’s colour/pattern. (Applicable on Mac OS

8/9 only.)
kThemeBrushDocumentWindowBackground A document window’s background colour/pattern.

Text Colour Constants
Constants of type ThemeTextColor may be passed in the inColor parameter of the function SetThemeTextColor to
specify theme-compliant text colours for user interface elements in their active, inactive, and highlighted
states. Some of these constants are as follows:

Constant Description
kThemeTextColorWindowHeaderActive Text colour for active window header.
kThemeTextColorWindowHeaderInactive Text colour for inactive window header.
kThemeTextColorPlacardActive Text colour for active placard.
kThemeTextColorPlacardInactive Text colour for inactive placard.
kThemeListViewTextColor Text colour for list view. (Applicable on Mac OS 8/9 only.)

Appearance Manager Text
The Appearance Manager function UseThemeFont may be used to set the font for the current graphics port.
Text drawn on Mac OS X using QuickDraw functions such as DrawString is not entirely satisfactory. You
should therefore use the Appearance Manager function DrawThemeTextBox to draw text when your
application is running on Mac OS X.
You pass a value of type ThemeFontID in the inFontID parameter of UseThemeFont and DrawThemeTextBox. The
principal relevant constants are as follows:

Constant Font on Mac OS 8/9 Font on Mac OS
X

kThemeSystemFont As set in Appearance control panel. Lucida Grande Regular 13pt
kThemeEmphasizedSystemFont System font, as set in Appearance control panel. Lucida Grande Bold 13pt
kThemeSmallSystemFont As set in Appearance control panel. Lucida Grande Regular 11pt
kThemeSmallEmphasizedSystemFont Small system font, as set in Appearance control

panel, bold.
Lucida Grande Bold 11pt

kThemeApplicationFont Geneva 12pt. Lucida Grande Regular 13pt
kThemeLabelFont System font, as set in Appearance control panel. Lucida Grande Regular 10pt

Saving and Setting the Graphics Port Drawing State
Chapter 12 addresses certain measures which need to be taken consequential to the fact that both colours
and patterns can be used by the Appearance functions SetThemeWindowBackground, SetThemeBackground, and

The Appearance Manager Version 1.0 6-5

SetThemePen. These measures have to do with saving, restoring, and normalising the drawing state of the
graphics port. The associated functions are as follows:

Constant Description
GetThemeDrawingState Obtain the drawing state of the current graphics port.
SetThemeDrawingState Set the drawing state of the current graphics port.
NormalizeThemeDrawingState Set the current graphics port to the default drawing state.
DisposeThemeDrawingState Release the memory associated with a reference to a graphics port's drawing state.

Cursor Setting
The Appearance Manager introduced the following cursor-setting functions, the uses of which are
addressed at Chapter 13:

Constant Description
SetThemeCursor Sets the cursor.
SetAnimatedThemeCursor Sets an animated cursor.

Getting Menu Bar Height
The Appearance Manager introduced the function GetThemeMenuBarHeight. In most instances, the value
returned by this function and GetMBarHeight are the same. However, when the menu bar is hidden,
GetMBarHeight produces a value of 0, whereas GetThemeMenuBarHeight still returns the height of the (hidden)
menu bar.

Appearance Manager Apple Events
On Mac OS 8/9, your application may need to respond to the user changing the system and/or views fonts
using the Fonts tab in the Appearance control panel. Your application is advised of font changes via
Appearance Manager Apple events. Appearance Manager Apple events are addressed at Chapter 10.

Carbon Note
Prior to CarbonLib 1.1, it was necessary to call RegisterAppearanceClient at program launch in order for your
application to receive Appearance Manager Apple events. However, in CarbonLib 1.1 and later, the CarbonLib
initialisation routine calls RegisterAppearanceClient on behalf of your application, and there is thus no requirement
for your application to call this function.

6-6 Version 1.0 The Appearance Manager

Main Constants, Data Types, and Functions

Constants
Theme-Compliant Brush Type Constants
kThemeBrushDialogBackgroundActive = 1
kThemeBrushDialogBackgroundInactive = 2
kThemeBrushAlertBackgroundActive = 3
kThemeBrushAlertBackgroundInactive = 4
kThemeBrushModelessDialogBackgroundActive = 5
kThemeBrushModelessDialogBackgroundInactive = 6
kThemeBrushUtilityWindowBackgroundActive = 7
kThemeBrushUtilityWindowBackgroundInactive = 8
kThemeBrushListViewSortColumnBackground = 9
kThemeBrushListViewBackground = 10
kThemeBrushListViewSeparator = 12
kThemeBrushDocumentWindowBackground = 15
kThemeBrushFinderWindowBackground = 16
kThemeBrushBlack = -1
kThemeBrushWhite = -2

Theme-Compliant Text Colour Constants
kThemeTextColorWindowHeaderActive = 7
kThemeTextColorWindowHeaderInactive = 8
kThemeTextColorPlacardActive = 9
kThemeTextColorPlacardInactive = 10
kThemeTextColorPlacardPressed = 11
kThemeTextColorListView = 22
kThemeTextColorBlack = -1
kThemeTextColorWhite = -2

Theme-Compliant Draw State Constants (For Primitives)
kThemeStateInactive = 0
kThemeStateActive = 1
kThemeStatePressed = 2

Theme Cursor Constants
kThemeArrowCursor = 0
kThemeCopyArrowCursor = 1
kThemeAliasArrowCursor = 2
kThemeContextualMenuArrowCursor = 3
kThemeIBeamCursor = 4
kThemeCrossCursor = 5
kThemePlusCursor = 6
kThemeWatchCursor = 7 Can animate
kThemeClosedHandCursor = 8
kThemeOpenHandCursor = 9
kThemePointingHandCursor = 10
kThemeCountingUpHandCursor = 11 Can animate
kThemeCountingDownHandCursor = 12 Can animate
kThemeCountingUpAndDownHandCursor = 13 Can animate
kThemeSpinningCursor = 14 Can animate
kThemeResizeLeftCursor = 15
kThemeResizeRightCursor = 16
kThemeResizeLeftRightCursor = 17

Font Constants
kThemeSystemFont = 0
kThemeSmallSystemFont = 1
kThemeSmallEmphasizedSystemFont = 2
kThemeViewsFont = 3
kThemeEmphasizedSystemFont = 4
kThemeApplicationFont = 5
kThemeLabelFont = 6
kThemeCurrentPortFont = 200

Data Types
typedef UInt32 ThemeDrawState;
typedef SInt16 ThemeBrush;
typedef SInt16 ThemeTextColor;

The Appearance Manager Version 1.0 6-7

typedef UInt32 ThemeCursor;
typedef struct OpaqueThemeDrawingState* ThemeDrawingState;

Functions
Drawing Appearance Primitives
OSStatus DrawThemeWindowHeader(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeWindowListViewHeader(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemePlacard(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeEditTextFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeListBoxFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeFocusRect(const Rect *inRect,Boolean inHasFocus);
OSStatus DrawThemePrimaryGroup(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeSecondaryGroup(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeSeparator(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeModelessDialogFrame(const Rect *inRect,ThemeDrawState inState);
OSStatus DrawThemeGenericWell(const Rect *inRect,ThemeDrawState inState,
 Boolean inFillCenter);
OSStatus DrawThemeFocusRegion(RgnHandle inRegion,Boolean inHasFocus);
OSStatus DrawThemeTab(const Rect *inRect,ThemeTabStyle inStyle,ThemeTabDirection inDirection,
 ThemeTabTitleDrawUPP labelProc,UInt32 userData);
OSStatus DrawThemeTabPane(const Rect *inRect,ThemeDrawState inState);

Drawing in Colours/Patterns Consistent With Platinum/Aqua
OSStatus SetThemeWindowBackground(WindowPtr inWindow,ThemeBrush inBrush,Boolean inUpdate);
OSStatus SetThemeBackground(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice);
OSStatus SetThemePen(ThemeBrush inBrush,SInt16 inDepth,Boolean inIsColorDevice);
OSStatus SetThemeTextColor(ThemeTextColor inColor,SInt16 inDepth,Boolean inIsColorDevice);

Setting and Getting the Graphics Port Font
OSStatus UseThemeFont(ThemeFontID inFontID,ScriptCode inScript);
OSStatus GetThemeFont(ThemeFontID inFontID,ScriptCode inScript,Str255 outFontName,
 SInt16 *outFontSize,Style *outStyle);

Drawing Text
OSStatus DrawThemeTextBox(CFStringRef inString,ThemeFontID inFontID,ThemeDrawState inState,
 Boolean inWrapToWidth,const Rect *inBoundingBox,SInt16 inJust,void *inContext);
OSStatus TruncateThemeText(CFMutableStringRef inString,ThemeFontID inFontID,
 ThemeDrawState inState,SInt16 inPixelWidthLimit,TruncCode inTruncWhere,
 Boolean *outTruncated);
OSStatus GetThemeTextDimensions(CFStringRef inString,ThemeFontID inFontID,
 ThemeDrawState inState,Boolean inWrapToWidth,Point *ioBounds,SInt16 *outBaseline);
OSStatus GetThemeTextShadowOutset(ThemeFontID inFontID,ThemeDrawState inState,
 Rect * outOutset);

Saving and Setting the Graphics Port Drawing State
OSStatus NormalizeThemeDrawingState(void);
OSStatus GetThemeDrawingState(ThemeDrawingState *outState);
OSStatus SetThemeDrawingState(ThemeDrawingState inState,Boolean inDisposeNow);
OSStatus DisposeThemeDrawingState(ThemeDrawingState inState);

Setting Appearance Cursors
OSStatus SetThemeCursor(ThemeCursor inCursor);
OSStatus SetAnimatedThemeCursor(ThemeCursorinCursor,UInt32 inAnimationStep);

Getting Menu Bar Height
OSStatus GetThemeMenuBarHeight(SInt16 *outHeight);

6-8 Version 1.0 The Appearance Manager

Demonstration Program Appearance Listing
// ***
// Appearance.c CLASSIC EVENT MODEL
// ***
//
// This program opens two kWindowDocumentProc windows containing:
//
// • In the first window:
//
// • On Mac OS 8/9, a theme-compliant list view.
//
// • On Mac OS X, some text drawn with Appearance Manager functions.
//
// • In the second window, various images drawn with Appearance primitives and, on Mac OS
// 8/9, text drawn in the window header in the correct Appearance colour.
//
// Two of the images in the second window are edit text field frames and one is a list box
// frame. At any one time, one of these will have a keyboard focus frame drawn around it.
// Clicking in one of the other frames will move the keyboard focus frame to that frame.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, and Edit menus (preload,
// non-purgeable).
//
// • Two 'WIND' resources (purgeable) (initially not visible).
//
// • A 'STR#' list resource (purgeable) containing text drawn in the first window.
//
// • 'hrct' and 'hwin' resources (both purgeable), which provide help balloons describing the
// contents of the windows (Mac OS 8/9).
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

#define rMenubar 128
#define rNewWindow1 128
#define rNewWindow2 129
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define sDescription 128
#define MAX_UINT32 0xFFFFFFFF

//
………
…………………………… global variables

Boolean gRunningOnX = false;
Boolean gDone;
Boolean gInBackground;
WindowRef gWindowRef1, gWindowRef2;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
Rect gCurrentRect;
Rect gEditText1Rect = { 141, 20, 162, 239 };
Rect gEditText2Rect = { 169, 20, 190, 239 };
Rect gListBoxRect = { 203, 90, 300, 239 };

The Appearance Manager Version 1.0 6-9

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doEvents (EventRecord *);
void doUpdate (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowRef,Boolean);
void doOSEvent (EventRecord *);
void doDrawAppearancePrimitives (ThemeDrawState);
void doDrawThemeCompliantTextOn9 (WindowRef,ThemeDrawState);
void doDrawListViewOn9 (WindowRef);
void doDrawThemeTextOnX (WindowRef,ThemeDrawState);
void doChangeKeyBoardFocus (Point);
void doGetDepthAndDevice (void);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 SInt16 fontNum;
 EventRecord EventStructure;

 //
………
……………………… do preliminaries

 doPreliminaries();

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }

 // ………………………………………………………………………………………… open first window, set font and font size, show window

 if(!(gWindowRef1 = GetNewCWindow(rNewWindow1,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(gWindowRef1);
 if(!gRunningOnX)
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);
 else
 {
 GetFNum("\pAmerican Typewriter",&fontNum);
 TextFont(fontNum);
 TextSize(11);
 }

 if(!gRunningOnX)
 SetWTitle(gWindowRef1,"\pList Views");
 else
 SetWTitle(gWindowRef1,"\pTheme Text");

6-10 Version 1.0 The Appearance Manager

 ShowWindow(gWindowRef1);

 // ………………………………………… open second window, set font, set background colour/pattern, show window

 if(!(gWindowRef2 = GetNewCWindow(rNewWindow2,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(gWindowRef2);
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

 SetThemeWindowBackground(gWindowRef2,kThemeBrushDialogBackgroundActive,false);

 ShowWindow(gWindowRef2);

 // ……………… get pixel depth and whether colour device for certain Appearance Manager functions

 if(!gRunningOnX)
 doGetDepthAndDevice();

// …………………………………… set top edit text field rectangle as target for initial keyboard focus frame

 gCurrentRect = gEditText1Rect;

 //
………
………………………… enter eventLoop

 gDone = false;

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&EventStructure,MAX_UINT32,NULL))
 doEvents(&EventStructure);
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(32);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)

The Appearance Manager Version 1.0 6-11

{
 SInt32 menuChoice;
 MenuID menuID;
 MenuItemIndex menuItem;
 WindowPartCode partCode;
 WindowRef windowRef;

 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 menuChoice = MenuEvent(eventStrucPtr);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);
 if(menuID == mFile && menuItem == iQuit)
 gDone = true;
 }
 break;

 case mouseDown:
 if(partCode = FindWindow(eventStrucPtr->where,&windowRef))
 {
 switch(partCode)
 {
 case inMenuBar:
 menuChoice = MenuSelect(eventStrucPtr->where);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 {
 SysBeep(10);
 HiliteMenu(0);
 }
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 break;
 }
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 {
 if(FrontWindow() == gWindowRef2)
 {
 SetPortWindowPort(gWindowRef2);
 doChangeKeyBoardFocus(eventStrucPtr->where);
 }
 }
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;
 }
 }
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:

6-12 Version 1.0 The Appearance Manager

 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;

 windowRef = (WindowRef) eventStrucPtr->message;

 BeginUpdate(windowRef);

 SetPortWindowPort(windowRef);

 if(windowRef == gWindowRef2)
 {
 if(gWindowRef2 == FrontWindow() && !gInBackground)
 {
 doDrawAppearancePrimitives(kThemeStateActive);
 DrawThemeFocusRect(&gCurrentRect,true);
 if(!gRunningOnX)
 doDrawThemeCompliantTextOn9(windowRef,kThemeStateActive);
 }
 else
 {
 doDrawAppearancePrimitives(kThemeStateInactive);
 if(!gRunningOnX)
 doDrawThemeCompliantTextOn9(windowRef,kThemeStateInactive);
 }
 }

 if(windowRef == gWindowRef1)
 {
 if(!gRunningOnX)
 doDrawListViewOn9(windowRef);
 }

 EndUpdate(windowRef);
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 Boolean becomingActive;

 windowRef = (WindowRef) eventStrucPtr->message;
 becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);
 doActivateWindow(windowRef,becomingActive);
}

// ** doActivateWindow

void doActivateWindow(WindowRef windowRef,Boolean becomingActive)
{
 if(windowRef == gWindowRef2)
 {
 SetPortWindowPort(gWindowRef2);
 doDrawAppearancePrimitives(becomingActive);
 DrawThemeFocusRect(&gCurrentRect,becomingActive);

 if(!gRunningOnX)
 doDrawThemeCompliantTextOn9(windowRef,becomingActive);

 }
 else if(windowRef == gWindowRef1 && gRunningOnX)
 {
 SetPortWindowPort(gWindowRef1);
 doDrawThemeTextOnX(windowRef,becomingActive);
 }
}

The Appearance Manager Version 1.0 6-13

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 {
 SetThemeCursor(kThemeArrowCursor);
 gInBackground = false;
 }
 else
 gInBackground = true;
 break;
 }
}

// ** doDrawAppearancePrimitives

void doDrawAppearancePrimitives(ThemeDrawState inState)
{
 Rect theRect;

 if(gRunningOnX)
 {
 GetWindowPortBounds(gWindowRef2,&theRect);
 EraseRect(&theRect);
 }

 SetRect(&theRect,-1,-1,261,26);
 DrawThemeWindowHeader(&theRect,inState);

 SetRect(&theRect,20,46,119,115);
 DrawThemePrimaryGroup(&theRect,inState);

 SetRect(&theRect,140,46,239,115);
 DrawThemeSecondaryGroup(&theRect,inState);

 SetRect(&theRect,20,127,240,128);
 DrawThemeSeparator(&theRect,inState);

 DrawThemeEditTextFrame(&gEditText1Rect,inState);

 DrawThemeEditTextFrame(&gEditText2Rect,inState);

 SetRect(&theRect,20,203,62,245);
 DrawThemeGenericWell(&theRect,inState,false);

 SetRect(&theRect,20,258,62,300);
 DrawThemeGenericWell(&theRect,inState,true);

 SetRect(&theRect,75,202,76,302);
 DrawThemeSeparator(&theRect,inState);

 DrawThemeListBoxFrame(&gListBoxRect,inState);

 SetRect(&theRect,-1,321,261,337);
 DrawThemePlacard(&theRect,inState);
}

// *** doDrawThemeCompliantTextOn9

void doDrawThemeCompliantTextOn9(WindowRef windowRef,ThemeDrawState inState)
{
 SInt16 windowWidth, stringWidth;
 Rect portRect;
 Str255 message = "\pBalloon help is available";

 if(inState == kThemeStateActive)
 SetThemeTextColor(kThemeTextColorWindowHeaderActive,gPixelDepth,gIsColourDevice);
 else
 SetThemeTextColor(kThemeTextColorWindowHeaderInactive,gPixelDepth,gIsColourDevice);

 GetWindowPortBounds(windowRef,&portRect);
 windowWidth = portRect.right - portRect.left;
 stringWidth = StringWidth(message);
 MoveTo((windowWidth / 2) - (stringWidth / 2), 17);

6-14 Version 1.0 The Appearance Manager

 DrawString(message);
}

// *** doDrawListViewOn9

void doDrawListViewOn9(WindowRef windowRef)
{
 Rect theRect;
 SInt16 a;

 GetWindowPortBounds(windowRef,&theRect);

 SetThemeBackground(kThemeBrushListViewBackground,gPixelDepth,gIsColourDevice);
 EraseRect(&theRect);

 theRect.left += 130;

 SetThemeBackground(kThemeBrushListViewSortColumnBackground,gPixelDepth,gIsColourDevice);
 EraseRect(&theRect);

 SetThemePen(kThemeBrushListViewSeparator,gPixelDepth,gIsColourDevice);

 GetWindowPortBounds(windowRef,&theRect);

 for(a=theRect.top;a<=theRect.bottom;a+=18)
 {
 MoveTo(theRect.left,a);
 LineTo(theRect.right - 1,a);
 }

 SetThemeTextColor(kThemeTextColorListView,gPixelDepth,gIsColourDevice);

 for(a=theRect.top;a<=theRect.bottom +18;a+=18)
 {
 MoveTo(theRect.left,a - 5);
 DrawString("\p List View Background List View Sort Column");
 }
}

// ** doDrawThemeTextOnX

void doDrawThemeTextOnX(WindowRef windowRef,ThemeDrawState inState)
{
 Rect portRect;
 Str255 theString;
 CFStringRef stringRef;

 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);

 if(inState == kThemeStateActive)
 TextMode(srcOr);
 else
 TextMode(grayishTextOr);

 SetRect(&portRect,portRect.left,30,portRect.right,50);
 DrawThemeTextBox(CFSTR("System Font"),kThemeSystemFont,inState,true,
 &portRect,teJustCenter,NULL);
 SetRect(&portRect,portRect.left,60,portRect.right,80);
 DrawThemeTextBox(CFSTR("Emphasized System Font"),kThemeEmphasizedSystemFont,inState,true,
 &portRect,teJustCenter,NULL);
 SetRect(&portRect,portRect.left,90,portRect.right,105);
 DrawThemeTextBox(CFSTR("Small System Font"),kThemeSmallSystemFont,inState,true,
 &portRect,teJustCenter,NULL);
 SetRect(&portRect,portRect.left,120,portRect.right,135);
 DrawThemeTextBox(CFSTR("Small Emphasized System Font"),kThemeSmallEmphasizedSystemFont,
 inState,true,&portRect,teJustCenter,NULL);
 SetRect(&portRect,portRect.left,150,portRect.right,170);
 DrawThemeTextBox(CFSTR("Application Font"),kThemeApplicationFont,inState,true,
 &portRect,teJustCenter,NULL);
 SetRect(&portRect,portRect.left,180,portRect.right,190);
 DrawThemeTextBox(CFSTR("Label Font"),kThemeLabelFont,inState,true,
 &portRect,teJustCenter,NULL);

 GetIndString(theString,sDescription,1);
 stringRef = CFStringCreateWithPascalString(NULL,theString,CFStringGetSystemEncoding());
 SetRect(&portRect,portRect.left + 20,210,portRect.right - 20,300);
 DrawThemeTextBox(stringRef,kThemeCurrentPortFont,inState,true,&portRect,teJustCenter,NULL);

The Appearance Manager Version 1.0 6-15

 if(stringRef != NULL)
 CFRelease(stringRef);
}

// *** doChangeKeyBoardFocus

void doChangeKeyBoardFocus(Point mouseXY)
{
 Rect portRect;

 DrawThemeFocusRect(&gCurrentRect,false);
 DrawThemeEditTextFrame(&gCurrentRect,kThemeStateActive);
 SetPortWindowPort(gWindowRef2);
 GlobalToLocal(&mouseXY);

 if(PtInRect(mouseXY,&gEditText1Rect))
 gCurrentRect = gEditText1Rect;
 else if(PtInRect(mouseXY,&gEditText2Rect))
 gCurrentRect = gEditText2Rect;
 else if(PtInRect(mouseXY,&gListBoxRect))
 gCurrentRect = gListBoxRect;

 GetWindowPortBounds(gWindowRef2,&portRect);
 InvalWindowRect(gWindowRef2,&portRect);
}

// *** doGetDepthAndDevice

void doGetDepthAndDevice(void)
{
 GDHandle deviceHdl;

 deviceHdl = GetMainDevice();
 gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
 if(((1 << gdDevType) & (*deviceHdl)->gdFlags) != 0)
 gIsColourDevice = true;
}

// ***

6-16 Version 1.0 The Appearance Manager

Demonstration Program Appearance Comments
When this program is run, the user should:

• With the "Drawing With Primitives" window frontmost, click in the edit text frame not currently outlined with the keyboard
focus frame, or in the list box frame, so as to move the keyboard focus frame to that rectangle.

• Click on the desktop to send the application to the background and note the changed appearance of the frames and text in
the "Drawing With Primitives" window. On Mac OS 8/9, note also that there is no change to the appearance of the content
region of the "List Views" window. On Mac OS X, note the changed appearance of the text in the "Theme Text" window.
Click on the "Drawing With Primitives" window to bring the application to the foreground with that window active, noting
the changed appearance of the frames and text. Click on the "Theme Text" window to make it active and note the
changed appearance of the text.

• On Mac OS 8/9, Choose Show Balloons from the Help menu and move the cursor over the frames in the window titled
"Drawing With Primitives" window (when active), and the left and right sides of the window titled "List Views" (when
active), noting the descriptions in the balloons.

In the following, reference is made to graphics devices and pixel depth. Graphics devices and pixel depth are explained
at Chapter 11.

Global Variables
gWindowRef1 and gWindowRef2 will be assigned references to window objects.

gPixelDepth will be assigned the pixel depth of the main device (screen). gIsColourDevice will be assigned true if the graphics
device is a colour device and false if it is a monochrome device. The values in these two variables are required by certain
Appearance Manager functions.

gCurrentRect will be assigned the rectangle which is to be the current target for the keyboard focus frame. gEditText1Rect,
gEditText2Rect, and gListBoxRect are assigned the rectangles for the two edit text frames and the list box frame.

main
After each window is created, its graphics port is set as the current port before the port's font is set. For the first window's
graphics port, if the program is running on Mac OS 8/9, the Appearance Manager function UseThemeFont is called to set the
font to the small system font. Otherwise the Font Manager function GetFNum is called to get the font number for American
Typewriter, which is then set as the port's font, at 11 points, by the QuickDraw functions TextFont and TextSize. For the
second window's graphics port, UseThemeFont is called to set the font to the small system font.

If the program is running on OS 8/9, SetThemeWindowBackground is called to set a theme-compliant colour/pattern for the
"Drawing With Primitives" window's content area. This means that the content area will be automatically repainted with that
colour/pattern when required with no further assistance from the application. When false is passed in the third parameter, the
content region of the window is not invalidated. (Passing true in this instance is not appropriate because the window is not
yet showing.)

If the program is running on OS 8/9, doGetDepthAndDevice is called to determine the current pixel depth of the graphics port,
and whether the current graphics device is a colour device, and assign the results to the global variables gPixelDepth and
gIsColourDevice. These values are required by certain Appearance Manager functions which, in this program, are not called if
the program is running on Mac OS X.

The next line sets the initial target for the keyboard focus frame. This is the rectangle used by the first edit text field frame.

doEvents
At the mouseDown case, the inContent case within the partCode switch is of relevance to the demonstration.

If the mouse-down was within the content region of a window, and if that window is not the front window, SelectWindow is
called to bring that window to the front and activate it.

However, if the window is the front window, and if that window is the "Drawing With Primitives" window, that window's
graphics port is set as the current graphics port for drawing, and doChangeKeyBoardFocus is called. That function determines
whether the mouse-down was within one of the edit text field frames or the list box frame, and moves the keyboard focus if
necessary.

doUpdate
Within the doUpdate function, if the window to which the update event relates is the "Drawing With Primitives" window, if that
window is currently the front window, and if the application is not currently in the background:

• Functions are called to draw the primitives and, on Mac OS 8/9 only, the window header text in the active mode.

• DrawThemeFocusRect is called to draw the keyboard focus frame using the rectangle currently assigned to the global
variable gCurrentRect.

The Appearance Manager Version 1.0 6-17

If, however, the "Drawing With Primitives" window is not the front window, the same calls are made but with the primitives
and, on Mac OS 8/9 only, text being drawn in the inactive mode. Note that no call is required to erase the keyboard focus
frame because this will already have been erased when the window was deactivated (see below).

If the window to which the update event relates is the "List Views" window, doDrawListViewOn9 is called to draw the window's
content area. Note that, for this window, there is no differentiation between active and inactive modes. This is because, for
list views, the same brush type constants are used regardless of whether the window is active or inactive.

doActivateWindow
When an activate event is received for the "Drawing With Primitives" window, functions are called to draw the primitives and,
on Mac OS 8/9 only, the window header text. In addition, an Appearance Manager function which draws and erases the
keyboard focus rectangle is called. The value passed in the becomingActive parameter of these calls ensures ensure that,
firstly, the primitives and text are drawn in the appropriate mode and, secondly, the keyboard focus frame is either drawn or
erased, depending on whether the window is coming to the front or being sent to the back.

If the activate event is for the first window and the program is running on Mac OS X, doDrawThemeTextOnX is called to draw
some text in the window in either the active or inactive mode.

doDrawAppearancePrimitives
doDrawAppearancePrimitives uses Appearance Manager functions for drawing Appearance primitives, and is called to draw
the various frames in the "Drawing With Primitives" window. The mode in which the primitives are drawn (active or inactive)
is determined by the Boolean value passed in the inState parameter.

doDrawThemeCompliantTextOn9
doDrawThemeCompliantTextOn9, which is called only if the program is running on Mac OS 8/9, draw some advisory text in the
window header of the "Drawing With Primitives" window. The QuickDraw drawing function DrawString does the drawing;
however, before the drawing begins, the Appearance Manager function SetThemeTextColor is used to set the foreground
colour for drawing text, in either the active or inactive modes, so as to comply with the Platinum appearance.

At the first two lines, if "Drawing With Primitives" is the active window, SetThemeTextColor is called with the
kThemeTextColorWindowHeaderActive text colour constant passed in the first parameter. At the next two lines, if the window
is inactive, SetThemeTextColor is called with kThemeTextColorWindowHeaderInactive passed in the first parameter. Note that
SetThemeTextColor requires the pixel depth of the graphics port, and whether the graphics device is a colour device or a
monochrome device, passed in the second and third parameters.

The next four lines simply adjust QuickDraw's pen location so that the text is drawn centered laterally in the window header
frame. The call to DrawString draws the specified text.

doDrawListViewOn9
doDrawListViewOn9, which is called only if the program is running on Mac OS 8/9, draws a list view background in the
specified window.

The first line copies the window's port rectangle to a local variable of type Rect.

The call to SetThemeBackground sets the background colour/pattern to the colour/pattern represented by the theme-
compliant brush type constant kThemeBrushListViewBackground. The QuickDraw function EraseRect fills the whole of the
port rectangle with this colour/pattern.

The next line adjusts the Rect variable's left field so that the rectangle now represents the right half of the port rectangle. The
same drawing process is then repeated, but this time with kThemeBrushListViewSortColumnBackground passed in the first
parameter of the SetThemeBackground call.

SetThemePen is then called with the colour/pattern represented by the constant kThemeBrushListViewSeparator passed in the
first parameter. The rectangle for drawing is then expanded to equate with the port rectangle before the following five lines
draw one-pixel-wide horizontal lines, at 18-pixel intervals, from the top to the bottom of the port rectangle.

Finally, some text is drawn in the list view in the theme-compliant colour for list views. SetThemeTextColour is called with the
kThemeTextColorListView passed in, following which a for loop draws some text, at 18-pixel intervals, from the top to the
bottom of the port rectangle.

doDrawThemeTextOnX
doDrawThemeTextOnX is called only if the program is running on Mac OS X. It draws anti-aliased text in the first window.

GetWindowPortBounds is called to copy the port rectangle to a local variable of type Rect. EraseRect is then called to erase
the port rectangle, a necessary precursor to drawing over existing anti-aliased text on Mac OS X using the Appearance
Manager function DrawThemeTextBox.

As was done in the function doDrawThemeCompliantTextOn9, SetThemeTextColor could be used here to set the text colour
according to the value received in the inState formal parameter. However, in this instance the alternative of calling TextMode
is used. The so-called transfer modes passed in the calls to TextMode are explained at Chapter 12. srcOr is the default
transfer mode for text, and causes the colour of the glyph (the visual representation of a character) to be determined by the
graphics port's foreground colour. The non-standard mode grayishTextOr is used to draw text in the deactivated state.

Before each call to DrawThemeTextBox, SetRect is called to adjust the top and bottom fields of the Rect variable portRect.
This controls the vertical positioning of the text in the window, being passed in DrawThemeTextBox's inBoundingBox
parameter. teJustCenter is passed in DrawThemeTextBox's inJust parameter to cause the text to be centre-justified within the

6-18 Version 1.0 The Appearance Manager

rectangle. The Appearance Manager constants passed in the inFontID parameter determine the size and style of the drawn
text.

At the last block, a string is retrieved from a 'STR#' Resource. After being converted to a CFString, that string is drawn by
DrawThemeTextBox in the bottom of the window. Note that kThemeCurrentPort passed in the inFontID parameter so as to
cause the text to be drawn using the window's graphics port font, which was set in main.

doChangeKeyBoardFocus
doChangeKeyBoardFocus is called when a mouse-down occurs in the content region of the "Drawing With Primitives" window.

At the first two lines, Appearance Manager functions are used to, firstly, erase the keyboard focus frame from the rectangle
around which it is currently drawn and, secondly, redraw an edit text field frame around that rectangle.

The call to GlobalToLocal converts the coordinates of the mouse-down to the local coordinates required by the following calls
to PtInRect. PtInRect returns true if the mouse-down is within the rectangle passed in the second parameter. If one of the
calls to PtInRect returns true, that rectangle is made the current rectangle for keyboard focus by assigning it to the global
variable gCurrentRect.

The call to InvalWindowRect ensures that the keyboard focus frame will be drawn by the call to DrawThemeFocusRect in the
function doUpdate.

doGetDepthAndDevice
doGetDepthAndDevice determines the pixel depth of the graphics port, and whether the graphics device is a colour device or
a monochrome device, and assigns the results to two global variables. This information is required by the Appearance
Manager functions SetThemeTextColor, SetThemeBackground, and SetThemePen.

The Appearance Manager Version 1.0 6-19

	THE APPEARANCE MANAGER
	Demonstration Program: Appearance
	History
	Themes — New Definition

	On Mac OS 8/9, in Mac OS 8.5 and later, an individual theme is a set of user preferences encompassing:
	Theme-Compliance

	The Appearance Manager
	Carbon fully supports the Appearance Manager.
	New Definition Functions — Mac OS 8/9
	Colours, Patterns, and Appearance Primitives
	Drawing Appearance Primitives

	Your application might use these primitives to, for example, draw an image of a placard, window header, edit text field frame, etc., when you don’t want to use a control.
	Draw State Constants
	Drawing in Colours and Patterns Consistent With the Platinum Appearance and Aqua "Look"
	Brush Type Constants
	Text Colour Constants

	Appearance Manager Text
	Saving and Setting the Graphics Port Drawing State
	Cursor Setting
	Getting Menu Bar Height
	Appearance Manager Apple Events

	Carbon Note
	Main Constants, Data Types, and Functions
	Constants
	Theme-Compliant Brush Type Constants
	Theme-Compliant Text Colour Constants
	Theme-Compliant Draw State Constants (For Primitives)
	Theme Cursor Constants
	Font Constants

	Data Types
	Functions
	Drawing Appearance Primitives
	Drawing in Colours/Patterns Consistent With Platinum/Aqua
	Setting and Getting the Graphics Port Font
	Drawing Text
	Saving and Setting the Graphics Port Drawing State
	Setting Appearance Cursors
	Getting Menu Bar Height

	Demonstration Program Appearance Listing
	Demonstration Program Appearance Comments
	Global Variables
	main
	doEvents

	At the mouseDown case, the inContent case within the partCode switch is of relevance to the demonstration.
	doUpdate
	doActivateWindow
	doDrawAppearancePrimitives
	doDrawThemeCompliantTextOn9
	doDrawListViewOn9

	The first line copies the window's port rectangle to a local variable of type Rect.
	doDrawThemeTextOnX
	doChangeKeyBoardFocus
	doGetDepthAndDevice

